Deteksi Langkah Kaki Berdasarkan Total Akselerasi dan Sudut Kemiringan Menggunakan Sensor Accelerometer pada Smartphone

Made Liandana

Abstract


Deteksi langkah kaki menjadi topik yang menarik untuk diteliti karena hasil deteksi langkah dapat dimanfaatkan untuk berbagai pengaplikaisan. Penerapan deteksi langkah kaki banyak diimplementasikan untuk mendeteksi aktivitas fisik dan untuk deteksi posisi di dalam ruangan. Salah satu sensor yang dapat digunakan untuk mendeteksi langkah kaki adalah sensor accelerometer, baik sensor accelerometer yang telah disematkan pada perangkat smartphone atau modul sensor  yang dirakit dan dihubungkan dengan mikrokontroler. Pada penelitian ini menggunakan sensor accelerometer pada perangkat smartphone. Sumbu sensor yang digunakan adalah sumbu x, y, dan z. Nilai dari ketiga sumbu tersebut dihitung untuk mendapatkan nilai magnitude-nya atau total akselerasi, sebelum dihitung dilakukan proses filterasi terlebih dahulu. Total akselerasi dari ketiga sumbu tersebut ditentukan nilai puncaknya yang mewakili langkah kaki yang terjadi. Untuk posisi smartphone yang dipegang oleh pengguna diidentifikasi menggunakan sudut kemiringan. Terjadinya langkah diidentifikasi berdasarkan nilai ambang batas total akselerasi, sudut kemiriangan, dan jumlah total akselerasi yang memenuhi nilai ambang batas. Teknik yang diterapkan telah diujikan untuk 365 langkah, dari total pengujian tersebut teknik yang diimplementasikan ternyata mengidentifikasi terjadinya 406 langkah. Terdapat selisih langkah, yaitu 41 langkah lebih banyak dari kondisi sebenarnya atau sebesar 11,23% dari total langkah yang terjadi.


Keywords


detesi langkah, totol akselerasi, sudut kemiringan, accelerometer

Full Text:

PDF

References


Abadleh, Ahmad, Eshraq Al-Hawari, Esra’a Alkafaween, and Hamad Al-Sawalqah. 2017. “Step Detection Algorithm for Accurate Distance Estimation Using Dynamic Step Length.” In Proceedings - 18th IEEE International Conference on Mobile Data Management, MDM 2017, 324–28. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/MDM.2017.52.

Akhavian, Reza, and Amir H. Behzadan. 2016. “Smartphone-Based Construction Workers’ Activity Recognition and Classification.” Automation in Construction 71 (Part 2): 198–209. https://doi.org/10.1016/j.autcon.2016.08.015.

Ascioglu, Gokmen, and Yavuz Senol. 2020. “Design of a Wearable Wireless Multi-Sensor Monitoring System and Application for Activity Recognition Using Deep Learning.” IEEE Access 8 (September): 169183–95. https://doi.org/10.1109/access.2020.3024003.

Deng, Zhian, Xin Liu, Zhiyu Qu, Changbo Hou, and Weijian Si. 2018. “Robust Heading Estimation for Indoor Pedestrian Navigation Using Unconstrained Smartphones.” https://doi.org/10.1155/2018/5607036.

Developer, Android. n.d. “Sensor Gerak | Developer Android | Android Developers.” Accessed December 26, 2020. https://developer.android.com/guide/topics/sensors/sensors_motion.

Dobbins, Chelsea, and Reza Rawassizadeh. 2018. “Towards Clustering of Mobile and Smartwatch Accelerometer Data for Physical Activity Recognition.” Informatics 5 (2): 29. https://doi.org/10.3390/informatics5020029.

Fisher, Christopher J. 2010. “Using an Accelerometer for Inclination Sensing.” www.analog.com.

Gan, Xingli, Baoguo Yu, Zhang Heng, Lu Huang, and Yaning Li. 2018. “Indoor Combination Positioning Technology of Pseudolites and PDR.” In 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), 1–7. IEEE. https://doi.org/10.1109/UPINLBS.2018.8559941.

Guo, Ying, Qinghua Liu, Xianlei Ji, Shengli Wang, Mingyang Feng, and Yuxi Sun. 2019. “Multimode Pedestrian Dead Reckoning Gait Detection Algorithm Based on Identification of Pedestrian Phone Carrying Position.” https://doi.org/10.1155/2019/4709501.

Heng, Xia, Zhongmin Wang, and Jiacun Wang. 2016. “Human Activity Recognition Based on Transformed Accelerometer Data from a Mobile Phone.” International Journal of Communication Systems 29 (13): 1981–91. https://doi.org/10.1002/dac.2888.

Kang, Xiaomin, Baoqi Huang, and Guodong Qi. 2018. “A Novel Walking Detection and Step Counting Algorithm Using Unconstrained Smartphones.” Sensors (Switzerland) 18 (1). https://doi.org/10.3390/s18010297.

Lago, Paula, Fréderic Lang, Claudia Roncancio, Claudia Jiménez-Guarín, Radu Mateescu, and Nicolas Bonnefond. 2017. “The Contextact@A4H Real-Life Dataset of Daily-Living Activities Activity Recognition Using Model Checking.” In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10257 LNAI:175–88. Springer Verlag. https://doi.org/10.1007/978-3-319-57837-8_14.

Li, Wei, Zhaohui Song, Xiaolin Li, Lufeng Che, and Yuelin Wang. 2014. “A Novel Sandwich Capacitive Accelerometer with a Double-Sided 16-Beam-Mass Structure.” Microelectronic Engineering 115 (March): 32–38. https://doi.org/10.1016/j.mee.2013.10.022.

Li, Zhu, Wen Wu, Pan Zheng, Jin Liu, Ji Fan, and Liang Tu. 2016. “Novel Capacitive Sensing System Design of a Microelectromechanical Systems Accelerometer for Gravity Measurement Applications.” Micromachines 7 (9): 167. https://doi.org/10.3390/mi7090167.

Liu, Yu, Yanping Chen, Lili Shi, Zengshan Tian, Mu Zhou, and Lingxia Li. 2015. “Accelerometer Based Joint Step Detection and Adaptive Step Length Estimation Algorithm Using Handheld Devices.” Journal of Communications Vol. 10, N: 520–25. https://doi.org/10.12720/jcm.10.7.520-525.

Mukhopadhyay, Subhas Chandra. 2015. “Wearable Sensors for Human Activity Monitoring: A Review.” IEEE Sensors Journal. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/JSEN.2014.2370945.

Niu, Wei Meng, Fang Li-Qing, Zi Yuan Qi, and De Qing Guo. 2019. “Small Displacement Measuring System Based on MEMS Accelerometer.” Mathematical Problems in Engineering 2019. https://doi.org/10.1155/2019/3470604.

Park, Jaehyun, Yunki Kim, and Jangmyung Lee. 2012. “Waist Mounted Pedestrian Dead-Reckoning System.” In 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence, URAI 2012, 335–36. https://doi.org/10.1109/URAI.2012.6463008.

Paul, Pinky, and Thomas George. 2015. “An Effective Approach for Human Activity Recognition on Smartphone.” In ICETECH 2015 - 2015 IEEE International Conference on Engineering and Technology. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICETECH.2015.7275024.

Saha, Ashim, Tulika Sharma, Harshika Batra, Anupreksha Jain, and Vabna Pal. 2020. “Human Action Recognition Using Smartphone Sensors.” In 2020 International Conference on Computational Performance Evaluation, ComPE 2020, 238–43. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ComPE49325.2020.9200169.

Shahmohammadi, Farhad, Anahita Hosseini, Christine E. King, and Majid Sarrafzadeh. 2017. “Smartwatch Based Activity Recognition Using Active Learning.” In Proceedings - 2017 IEEE 2nd International Conference on Connected Health: Applications, Systems and Engineering Technologies, CHASE 2017, 321–29. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/CHASE.2017.115.

Suprem, Abhijit, Vishal Deep, and Tarek Elarabi. 2017. “Orientation and Displacement Detection for Smartphone Device Based IMUs.” IEEE Access 5: 987–97. https://doi.org/10.1109/ACCESS.2016.2631000.

Tang, Bin, Kazuo Sato, Shiwei Xi, Guofen Xie, De Zhang, and Yongsheng Cheng. 2014. “Process Development of an All-Silicon Capacitive Accelerometer with a Highly Symmetrical Spring-Mass Structure Etched in TMAH + Triton-X-100.” Sensors and Actuators, A: Physical 217 (September): 105–10. https://doi.org/10.1016/j.sna.2014.05.011.

Tao, L., T. Burghardt, S. Hannuna, M. Camplani, A. Paiement, D. Damen, M. Mirmehdi, and I. Craddock. 2015. “A Comparative Home Activity Monitoring Study Using Visual and Inertial Sensors.” In 2015 17th International Conference on E-Health Networking, Application and Services, HealthCom 2015, 644–47. Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/HealthCom.2015.7454583.




DOI: https://doi.org/10.35200/explore.v11i2.427

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

EXPLORE

Indexed By :

  

Jurnal EXPLORE STMIK Mataram
Jalan Kampus STMIK - ASM Mataram Kekalik Jaya Kota Mataram Prov. NTB - 83126
Telp: 0370-635007, 0370-628418
Site: https://ojs.stmikmataram.ac.id/index.php/explore
 

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-NonKomersial 4.0 Internasional.